Extensions 1→N→G→Q→1 with N=D4⋊S3 and Q=C22

Direct product G=N×Q with N=D4⋊S3 and Q=C22
dρLabelID
C22×D4⋊S396C2^2xD4:S3192,1351

Semidirect products G=N:Q with N=D4⋊S3 and Q=C22
extensionφ:Q→Out NdρLabelID
D4⋊S31C22 = D813D6φ: C22/C1C22 ⊆ Out D4⋊S3484D4:S3:1C2^2192,1316
D4⋊S32C22 = SD1613D6φ: C22/C1C22 ⊆ Out D4⋊S3484D4:S3:2C2^2192,1321
D4⋊S33C22 = D815D6φ: C22/C1C22 ⊆ Out D4⋊S3484+D4:S3:3C2^2192,1328
D4⋊S34C22 = D811D6φ: C22/C1C22 ⊆ Out D4⋊S3484D4:S3:4C2^2192,1329
D4⋊S35C22 = S3×C8⋊C22φ: C22/C1C22 ⊆ Out D4⋊S3248+D4:S3:5C2^2192,1331
D4⋊S36C22 = D84D6φ: C22/C1C22 ⊆ Out D4⋊S3488-D4:S3:6C2^2192,1332
D4⋊S37C22 = D24⋊C22φ: C22/C1C22 ⊆ Out D4⋊S3488+D4:S3:7C2^2192,1336
D4⋊S38C22 = C2×S3×D8φ: C22/C2C2 ⊆ Out D4⋊S348D4:S3:8C2^2192,1313
D4⋊S39C22 = C2×D8⋊S3φ: C22/C2C2 ⊆ Out D4⋊S348D4:S3:9C2^2192,1314
D4⋊S310C22 = C2×Q83D6φ: C22/C2C2 ⊆ Out D4⋊S348D4:S3:10C2^2192,1318
D4⋊S311C22 = C2×Q8.7D6φ: C22/C2C2 ⊆ Out D4⋊S396D4:S3:11C2^2192,1320
D4⋊S312C22 = S3×C4○D8φ: C22/C2C2 ⊆ Out D4⋊S3484D4:S3:12C2^2192,1326
D4⋊S313C22 = SD16⋊D6φ: C22/C2C2 ⊆ Out D4⋊S3484D4:S3:13C2^2192,1327
D4⋊S314C22 = D85D6φ: C22/C2C2 ⊆ Out D4⋊S3488+D4:S3:14C2^2192,1333
D4⋊S315C22 = D86D6φ: C22/C2C2 ⊆ Out D4⋊S3488-D4:S3:15C2^2192,1334
D4⋊S316C22 = C24.C23φ: C22/C2C2 ⊆ Out D4⋊S3488+D4:S3:16C2^2192,1337
D4⋊S317C22 = C2×D126C22φ: C22/C2C2 ⊆ Out D4⋊S348D4:S3:17C2^2192,1352
D4⋊S318C22 = C2×D4⋊D6φ: C22/C2C2 ⊆ Out D4⋊S348D4:S3:18C2^2192,1379
D4⋊S319C22 = C12.C24φ: C22/C2C2 ⊆ Out D4⋊S3484D4:S3:19C2^2192,1381
D4⋊S320C22 = D12.32C23φ: C22/C2C2 ⊆ Out D4⋊S3488+D4:S3:20C2^2192,1394
D4⋊S321C22 = D12.33C23φ: C22/C2C2 ⊆ Out D4⋊S3488-D4:S3:21C2^2192,1395
D4⋊S322C22 = D12.34C23φ: C22/C2C2 ⊆ Out D4⋊S3488+D4:S3:22C2^2192,1396
D4⋊S323C22 = C2×Q8.13D6φ: trivial image96D4:S3:23C2^2192,1380

Non-split extensions G=N.Q with N=D4⋊S3 and Q=C22
extensionφ:Q→Out NdρLabelID
D4⋊S3.C22 = SD16.D6φ: C22/C2C2 ⊆ Out D4⋊S3968-D4:S3.C2^2192,1338
D4⋊S3.2C22 = D12.35C23φ: trivial image968-D4:S3.2C2^2192,1397

׿
×
𝔽